
Draft version March 5, 2019

Typeset using LATEX twocolumn style in AASTeX62

astroquery: An Astronomical Web-Querying Package in Python

Adam Ginsburg,1 Brigitta M. Sipőcz,2, 3 C. E. Brasseur,4 Philip S. Cowperthwaite,5 Matthew W. Craig,6

Christoph Deil,7 James Guillochon,5 Giannina Guzman,8, 9 Simon Liedtke,10 Pey Lian Lim,4

Kelly E. Lockhart,5 Michael Mommert,11 Brett M. Morris,12 Henrik Norman,13, 14 Madhura Parikh,10

Magnus V. Persson,15 Thomas P. Robitaille,16 Juan-Carlos Segovia,14 Leo P. Singer,17, 18 Erik J. Tollerud,4

Miguel de Val-Borro,9, 19 Ivan Valtchanov,20 Julien Woillez,21 and
the Astroquery collaboration, a subset of the astropy collaboration

1Jansky fellow of the National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801 USA
2DIRAC Institute, Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA

3Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
4Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA

5Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
6Department of Physics and Astronomy, Minnesota State University Moorhead, 1104 7th Ave S., Moorhead, MN 56563, USA

7Max-Planck-Institut für Kernphysik, Heidelberg, Germany
8Department of Astrophysics and Planetary Science, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA

9NASA Goddard Space Flight Center, Astrochemistry Laboratory, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
10Google Summer of Code Student

11Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, AZ 86001, USA
12Astronomy Department, University of Washington, Seattle, WA 98195, USA

13Winter Way, Uppsala, Sweden
14ESAC Science Data Centre, European Space Agency, Madrid, Spain

15Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92, Onsala, Sweden
16Aperio Software Ltd., Headingley Enterprise and Arts Centre, Bennett Road, Leeds, LS6 3HN, United Kingdom

17Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA
18Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA
19Department of Physics, Catholic University of America, Washington, DC 20064, USA

20European Space Astronomy Centre, European Space Agency, Madrid, Spain
21European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany

ABSTRACT

astroquery is a collection of tools for requesting data from databases hosted on remote servers with

interfaces exposed on the internet, including those with web pages but without formal application
program interfaces (APIs). These tools are built on the Python requests package, which is used to

make HTTP requests, and astropy, which provides most of the data parsing functionality. astroquery

modules generally attempt to replicate the web page interface provided by a given service as closely
as possible, making the transition from browser-based to command-line interaction easy. astroquery

has received significant contributions from throughout the astronomical community, including several

significant contributions from telescope archives. astroquery enables the creation of fully reproducible

workflows from data acquisition through publication. This paper describes the philosophy, basic struc-
ture, and development model of the astroquery package. The complete documentation for astroquery

can be found at http://astroquery.readthedocs.io/. a)

1. INTRODUCTION

Corresponding author: Adam Ginsburg

aginsbur@nrao.edu; adam.g.ginsburg@gmail.com

a) The repository associated with this paper is:
https://github.com/adamginsburg/astroquery-paper

In the past few decades, large-scale surveys have
played a huge role in advancing our understanding of

the universe, and these surveys have produced enor-

mous reservoirs of data that astronomers regularly ac-

cess. However, tools for accessing these reservoirs are

heterogeneous and often only available via graphical user

interfaces (GUIs) or web sites.

2

One of the cornerstones of research is reproducibil-
ity. To be able to reproduce research, the data need

to be available to everyone. Many scientific journals

encourage or demand that the underlying data accom-

pany the article or be uploaded to a hosting service.

Data sharing is not only important for new results, but

also to provide the ability to test and verify published
results. While many different efforts to promote data
sharing have made the practice more common, it is dif-

ficult to keep track of how and where to retrieve a given

data set. A common scripted interface to tie all these

services together is a good way to make all the differ-

ent data more accessible, and it provides authors with

the ability to make the full analysis process they used

– from data download to publication – repeatable. A

centrally maintained library also safeguards against in-

evitable ‘link rot’ on data archives, moving some of the

responsibility for maintaining long-term reproducibility

from each individual researcher to the broader commu-

nity.
Data sharing has taken on a variety of forms. The

most prominent are the major observatory archives:

MAST, NOAO, ESO, ESA, IPAC, CDS, NRAO, CXC,

HEASARC, and CADC are the main organizations host-

ing raw and processed data from ground and space based

telescopes. These data archives also serve as the primary

means for serving data to users when the data are taken
in queue mode, i.e., when the data are taken while the
observer is not on-site.

In addition to observatories and telescopes, individual

surveys often share their full data sets. In some cases,
these data sets are shared via the observatory that ac-
quired them, for example, the all-sky data acquired with

Planck, WMAP, and COBE. Other surveys, particu-
larly ground-based surveys, serve their own data. Ex-
amples include SDSS, 2MASS, UKIDSS, and VSA.

Individual teams and small groups often share their

data via their own custom websites. These services do
not follow any particular standard and can be widely
varied in the type and amount of data shared. Some-

times these data are shared via the archive systems (e.g.,
IRSA at IPAC hosts many individual survey data sets),
while others use their own web hosting systems (e.g.,

MAGPIS).

Finally, there are other data types relevant to astron-

omy that are not served by the typical astronomical

databases. Examples include databases of molecular and
atomic properties, such as those provided by Splatalogue
and the NIST Atomic Spectra Database, bibliographic
databases such as the NASA Astrophysics Data System

(ADS), or services that are computationally intensive or

require regular updates, like Solar System ephemerides

provided by services like JPL HORIZONS, or the Minor

Planet Center.

astroquery arose from a desire to access these

databases from the Python command line in a scriptable

fashion. Script-based data access provides astronomers

with the ability to make reproducible analysis scripts

and pipelines in which the data are retrieved and pro-

cessed into scientifically relevant results with minimal

user interaction.

In this paper, we provide an overview of the astroquery

package. Section 2 describes the basic layout of the

software and the shared API concept underlying all
modules. Section 3 describes the development model.

Finally, Section 4 describes how astroquery is docu-
mented.

2. THE SOFTWARE

astroquery consists of a collection of modules that

mostly share a similar interface, but are meant to be

used independently. They are primarily based on a com-

mon framework that uses the Python requests1 pack-
age to perform HTTP requests to communicate with

web services. A list of supported services at the time of

publication is given in Table 1.

For new module development, there is a template_module

consisting of a folder with several individual python code

files that lays out the basic framework of any new mod-

ule. All modules have a single core class that has some
number of query_* methods. The most common query

method is query_region, which usually provides a “cone

search” functionality, i.e., they search for data within

a circular region. The results of the queries then are

returned in an astropy (Astropy Collaboration et al.

2018, 2013) Table.2

An example using the SIMBAD interface is shown be-

low:3

Example 1. Query SIMBAD for a region around M81

from astroquery.simbad import Simbad

result_table = Simbad.query_region("m81")

In this example, Simbad is an instance of

astroquery.simbad.SimbadClass, and result_table is

an astropy.table.Table containing the objects near

M81. This common interface allows users to use dif-
ferent services and process the resulting data in the
same manner despite the differences in the underly-

1 http://docs.python-requests.org/
2 http://docs.astropy.org/en/stable/table/
3 http://astroquery.readthedocs.io/en/latest/simbad/simbad.

html

3

Table 1. List of all Services & Surveys astroquery modules support.

Module name Service or Organization URL

alfalfa ALFALFA data repository http://arecibo.tc.cornell.edu/hiarchive/alfalfa

alma Atacama Large Millimeter/submillimeter Array Archive http://almascience.org

atomic Atomic Line List http://www.pa.uky.edu/~peter/atomic

besancon Besancon model of the Galaxy http://model.obs-besancon.fr

cds Centre de Données astronomiques de Strasbourg http://cds.u-strasbg.fr

cosmosim CosmoSim database https://www.cosmosim.org/uws/query

esasky ESASky of the European Space Agency http://sky.esa.int

eso European Southern Observatory Science Archive http://archive.eso.org/cms.html

exoplanet_orbit_database Exoplanet Orbit Database http://exoplanets.org

fermi Fermi Gamma-ray Space Telescope Data https://fermi.gsfc.nasa.gov/ssc/data

gaia Gaia Archive of the European Space Agency https://gea.esac.esa.int/archive

gama Galaxy and Mass Assembly Survey http://www.gama-survey.org/dr2/query

heasarc High Energy Astrophysics Science Archive Research Center https://heasarc.gsfc.nasa.gov

hitran HIgh-resolution TRANsmission molecular absorption
database

http://hitran.org/hapi, Kochanov et al. (2016)

ibe IRSA Image Server http://irsa.ipac.caltech.edu/ibe

irsa IRSA Catalog Query Service https://irsa.ipac.caltech.edu

irsa_dust IRSA Galactic Dust Reddening and Extinction Query https://irsa.ipac.caltech.edu/applications/DUST

jplhorizons JPL’s HORIZONS system https://ssd.jpl.nasa.gov/horizons_batch.cgi

jplsbdb JPL’s Small-Body DataBase https://ssd-api.jpl.nasa.gov/doc/sbdb.html

jplspec JPL’s Spectral Catalog https://spec.jpl.nasa.gov/cgi-bin/catform

lamda Leiden Atomic and Molecular Database http://home.strw.leidenuniv.nl/~moldata

magpis The Multi-Array Galactic Plane Imaging Survey https://third.ucllnl.org/gps

mast Barbara A. Mikulski Archive for Space Telescopes https://mast.stsci.edu

mpc Minor Planet Center Ephemeris Service https://minorplanetcenter.net

nasa_ads SAO/NASA Astrophysics Data System https://api.adsabs.harvard.edu

nasa_exoplanet_archive NASA Exoplanet Archive https://exoplanetarchive.ipac.caltech.edu

ned NASA Extragalactic Database https://ned.ipac.caltech.edu

nist NIST Atomic Spectra Database https://physics.nist.gov/PhysRefData/ASD

nrao National Radio Astronomy Observatory Data Archive https://archive.nrao.edu/archive

nvas NRAO VLA Archive Survey Images Page https://archive.nrao.edu/nvas

oac Open Astronomy Catalog https://astrocats.space

ogle Interstellar Extinction toward the Galactic Bulge from
OGLE-III data

http://ogle.astrouw.edu.pl/cgi-ogle/getext.py

open_exoplanet_catalogue Open Exoplanet Catalogue http://openexoplanetcatalogue.com

sdss Sloan Digital Sky Survey http://skyserver.sdss.org

sha Spitzer Heritage Archive http://sha.ipac.caltech.edu/applications/Spitzer/SHA

simbad CDS SIMBAD Astronomical Database http://simbad.u-strasbg.fr

skyview NASA’s SkyView Query http://skyview.gsfc.nasa.gov

splatalogue Splatalogue Database for astronomical spectroscopy query https://www.cv.nrao.edu/php/splat

ukidss UKIRT Infrared Deep Sky Survey http://wsa.roe.ac.uk

vamdc VAMDC molecular line database https://vamdclib.readthedocs.io/

vizier CDS VizieR Astronomical Catalogues http://vizier.u-strasbg.fr

vo_conesearch Simple Cone Search Databases https://astropy.stsci.edu/aux/vo_databases

vsa Vista Science Archive http://vsa.roe.ac.uk

xmatch CDS X-Match Service http://cdsxmatch.u-strasbg.fr

4

ing methods and services (e.g., SDSS.query_region(),
Simbad.query_region(), NED.query_region(), etc.)

While there is a common suggested API described

in the template_module, individual packages are not

required to support this API because, for some, it is
not possible. For example, the atomic and molecular

databases refer to physical data that are not related
to positions on the sky and therefore their astroquery

modules cannot include query_region methods. The

same applies to Solar System object ephemerides
queries. Differences in the API are discussed in the
astroquery documentation (see Section 4).

2.1. Version Numbers

astroquery uses the same format as traditional se-

mantic versioning, with versions indicated in the for-
mat MAJOR.MINOR.PATCH.devCOMMIT_ID (for example,

0.3.9.dev4581).

astroquery patches are frequently made to accom-

modate upstream changes, i.e., changes made to the
remote service, and as such are not guaranteed to
be backward-compatible. Thus, starting in mid-2018,

astroquery switched from a manual release model to
a continuous deployment model. Prior to this change,

the MAJOR.MINOR.PATCH versions were each created man-

ually by one of the maintainers, then pushed to pack-

age release services. After this change, each accepted

pull request automatically triggered a new release via

the python package index.4 We created a new manual

release, v0.3.9, to accompany the publication of this pa-
per.

2.2. HTTP User-Agent

astroquery identifies itself to host services using the

HTTP User-Agent header data, which is automatically
produced and sent to the archives with every request.
Users do not need to be aware of these metadata being

sent with their queries, but the information can be used

by data hosting services to determine how many users

are accessing their service via astroquery and to assist
in debugging if improper queries are being submitted.

The format of the user agent string is:

astroquery/{version} {requests_version}

where {version} is a version number of the form de-

scribed in §2.1 and {requests_version} is the corre-

sponding version of the Python requests package. For
example:

astroquery/0.3.9.dev4863 python-requests/2.14.2

4 https://pypi.org/

2.3. The API

The common API has a few features defined in the

template module. Each service is expected to provide

the following interfaces, assuming they are applicable:

• query_region - A method that accepts an Astropy

SkyCoord object representing a point on the sky
plus a specification of the radius around which to

search. The returned object is an Astropy table.

• query_object - A method that accepts the name

of an object. This method relies on the service

to resolve the object name, i.e., it does not use a

name resolver like SESAME.5 The returned object is

an Astropy table.

• get_images - For services that provide image data,

this method accepts an Astropy SkyCoord object
and a radius to search for data that cover the

specified target. The returned object is a list of

astropy.io.fits.HDUList objects.

We also require a low-level interface to the services

so that queries with very large results can be handled

by other methods (e.g., data streaming) if needed. The

low-level interface consists of a series of methods with

the same names, but with the additional suffix _async

(e.g., query_async). The query*_async methods return
a requests.Response object from the accessed website,

providing developers with the ability to access the data

in a stream or access only the response metadata (i.e.,

the async methods do not download the corresponding

data, so they may be useful for collecting metadata for

very large files). The get_images_async method returns

FileContainer objects that similarly provide ‘lazy’ ac-
cess to the data, but specifically for FITS files. Con-

tributors need only implement these _async methods

because there is a wrapper tool that converts _async

methods into their corresponding non-asynchronous ver-

sions.

Deviations from this standard API are documented
in the astroquery documentation (see Section 4). Most

deviations are for services for which query_region meth-

ods are not defined, such as atomic and molecular line

databases.

2.4. Caching and login functionality

Astroquery provides tools to handle multiple aspects
of querying that are common to all modules. The

BaseQuery metaclass provides tools for caching requests

and downloaded data, reducing the duration and the

5 http://cds.u-strasbg.fr/cgi-bin/Sesame

5

network load for repeated queries. Cached data are
stored in the user’s ~/.astropy/cache/astroquery di-

rectory. The BaseQuery metaclass is also responsible

for setting the User-Agent (§2.2). The QueryWithLogin

metaclass provides a framework for logging in securely
to services that require user authentication, including a

credential storage mechanism.

2.5. Error handling

Some queries will inevitably fail. Failures can take

on different modes. For common and expected modes,

such as searching for an object or location on the sky

and getting no results, the result is clearly communi-

cated as a simple null result or empty table. For unpre-

dictable and unexpected errors, such as server failures,

timeouts, and other related communication issues, the

errors are handled by the requests module, and normal

HTTP responses are returned (e.g., HTTP 200 means

the request was successful, while 503 indicates the re-

quest was forbidden by server-side permissions; a com-

plete list can be found at https://en.wikipedia.org/wiki/

List_of_HTTP_status_codes).

In some cases, when we know a particular failure mode

is likely (because the developers have encountered it at

least once), we catch and raise a specific Exception or

Warning. The full list of these is in the exceptions.py

file. Developers can use these custom exceptions to build
in additional robustness to data pipelines using astro-

query by either implementing workarounds to known is-

sues or correctly informing users of the problem.

2.6. Testing

Astroquery testing is somewhat different from most

other packages in the scientific Python ecosystem. While

the tests are based on the Astropy testing infrastructure

and use pytest to run and check the outputs, the astro-

query tests are split into remote and local. The remote

tests exactly replicate what a user would enter at the

command line, but they are dependent on the stability

of the remote services.

In our experience it is quite rare for all of the
astroquery-supported services to be accessible simulta-

neously.6 We therefore require that each module provide

some tests that do not rely on having an internet con-

6 While this issue affects testing, it rarely affects users, since
simply retrying a query is often enough to fix user issues. When
the servers are simply down or broken, astroquery is affected, and
the resulting errors are sometimes unpredictable; users are encour-
aged to report such failures as github issues (https://github.com/
astropy/astroquery/issues) so that better error messages can be
provided.

nection. These tests rely on monkeypatching7 to replace
the remote requests. Instead of downloading data, the

test suite uses locally available files to test the query

mechanisms and the data parsers. Monkeypatching in

the context of pytest results in code that is generally

more difficult to understand than typical Python code,

but a set of tests independent of the remote services is

necessary.

The local tests are run as part of the continuous in-

tegration for the project with each commit. The re-

mote tests are run for merges and as part of a regularly-

scheduled cron job. Running the remote tests less fre-

quently helps reduce the burden on the remote services.

2.7. Other utilities

There are several general-use utilities implemented as
part of astroquery, such as a bulk FITS file downloader

and renamer and a download progressbar (these tools

complement similar features in Astropy). There is also

a schema system implemented to allow user-side param-

eter validation. The schema systems are basic syntax-

checking tools that verify that the parameters the user

has input are of the right type and format for the target
service; for those services without schemas, the user can
hypothetically send queries that the service will be un-

able to handle. The schema tool is only implemented in

the ESO and Vizier modules, but it could be expanded

to other modules to reduce the number of doomed-to-fail

queries sent through astroquery.

3. DEVELOPMENT HISTORY AND STATUS

Anyone can contribute to astroquery. The maintainers
are committed to helping developers make new modules

that meet the requirements of astroquery. This section

describes how astroquery has been developed, but we

welcome all sorts of new contributions, including new

modules, upgrades to existing modules, and minor cor-

rections to existing tools from both individuals and in-
stitutions.

Astroquery is an Astropy coordinated package (Tollerud

2018) and is a critical component of the Astropy Project

ecosystem (Astropy Collaboration et al. 2018). It is a

standalone project and will remain independent of the

7 Monkeypatching is the dynamic replacement of attributes at
runtime, i.e., changing what functions do after they are imported.

6

astropy core package,8 but is coordinated by the As-
tropy Project to ensure sustainability and maintenance.

Astroquery has received contributions from 77 people

as of August 2018. While the primary maintenance bur-

den is shouldered by two people at any given time (the

first two authors), most individual modules have been

implemented independently by interested contributors.
Some contributions have come with direct institu-

tional support. The ESA Gaia and ESASky modules

were provided and supported by developers working for

ESA. The ADS module is maintained by developers

working at ADS. The MAST and VO Cone Search query

tools were added by developers at STScI, with the latter
moved over from astropy.vo (see Section 3.1).

Astroquery also receives contributions from other

funded programs. For instance, the JPLHorizons mod-

ule has been implemented as part of the sbpy project9

with support from NASA. Further Solar System-related
services are planned to be added to astroquery through

this support. Astroquery has also received support from
the Google Summer of Code program, with two students
(co-authors Madhura Parikh and Simon Liedtke) from
2013–2014.

Due to its nature as an openly developed package, new

directions in astroquery are primarily driven by contrib-
utors and data providers adding or updating modules

to reflect new or changed data sources. The underly-
ing software architecture has been demonstrably suffi-
cient to meet the needs of the current generation of data

sources (proven by the user base of astroquery). While

this policy may change in the future, the user-focused

nature of astroquery means that making such architec-

ture changes is unnecessary until there are specific data

sources or use cases to drive them.

3.1. Relation to the VO

The Virtual Observatory (VO) has some goals similar

to astroquery, though their approach and philosophy is

different. Where VO services provide a single point of

access for all VO-compatible services, astroquery pro-

vides a collection of access points that do not require
a specific API from the hosting service. The general
philosophy in astroquery is to replicate the web page
interface provided by a given service as closely as possi-

ble. While this approach makes some versions of cross-

8 Many Astropy affiliated packages are developed with the in-
tent of eventually including them in the core of astropy. In con-
trast, astroquery intends to remain a separate package indefinitely
largely because of its need to rapidly adapt to changes in the re-
mote services; astropy cannot make such rapid changes because
users rely on its stability.

9 http://sbpy.org

archive searches more difficult, it keeps the barrier to en-

try for new users fairly low and limits the maintenance

burden for upstream developers.

However, there are developments in progress to allow

more VO-like queries within astroquery, such as search-

ing for databases by keywords. As more services imple-

ment VO-based access, some query modules may adopt

VO as a backend, but these changes should be transpar-

ent to users (i.e., the astroquery interfaces will remain

unchanged). The documentation may guide users on

how to use the more sophisticated VO tools that un-
derly these tools.

Some general VO tools are available in astroquery.

The vo_conesearch package, which originally resided

in astropy, is now part of astroquery. VO Cone

Search has a query_region interface like the other
astroquery services in addition to the existing inter-

faces ported over from Astropy. As of astropy 3.0,
astropy.vo no longer exists; therefore, astroquery is

now the primary provider of this VO Cone Search ser-

vice. From a typical user’s standpoint, switching over

from astropy.vo should result in no difference except

for updating their Python import statements (e.g., from

astroquery.vo_conesearch import conesearch instead

of from astropy.vo.client import conesearch).

4. DOCUMENTATION AND REFERENCES

4.1. Online documentation

The astroquery modules are documented online and

can be accessed at https://astroquery.readthedocs.io/.

We include one detailed example of how to use astro-
query in Appendix A, but interested users will find many

more on the documentation page and in the example
gallery.10

4.2. Other Documents

Several authors have independently described how to

use various astroquery modules, which is a helpful prac-

tice we encourage.

• Cosmosim:11 a worked example of downloading

data from the cosmosim database, including log-

ging in.

• Paletou & Zolotukhin (2014): a worked example
of querying Vizier and SIMBAD to make a sur-

face gravity - effective temperature plot for a star

survey.

10 https://astroquery.readthedocs.io/en/latest/gallery.html
11 https://www.cosmosim.org/cms/news/

cosmosim-package-for-astroquery/

7

• Guillochon & Cowperthwaite (2018): the defini-
tion of the Open Astronomy Catalog API and a

description of the astroquery module built to use

it.

• MAST:12 A tutorial on the MAST astroquery in-

terface.

• GAIA:13 A tutorial on the GAIA astroquery in-

terface.

5. SUMMARY

Astroquery is a toolkit for accessing remotely hosted

astronomical data through Python. It is part of the As-

tropy affiliated package system. We have described its

general layout, its development model, and its role in

developing reproducible workflows. Astroquery is de-
veloped for and by our community: we welcome any
new contributions, and such contributions will continue

to define the future directions of the package.

We would like to thank the members of the community

that have contributed to astroquery, that have opened
issues and provided feedback, and have supported the

project in a number of different ways. We are grateful
for the infrastructural support the Astropy community
provides. astroquery is supported by and makes use of

a number of organizations and services outside the tra-
ditional academic community: GitHub, Travis CI, Ap-
pveyor, and Read the Docs. Our package relies heavily

on the following Python dependencies; we are grate-

ful for their maintainers and contributors: requests

beautifulsoup, and keyring.

We thank Google for financing and organizing the
Google Summer of Code program, that has funded two

students (SL, and MP) to work on astroquery in 2013

and 2014.

The following individuals would like to recognize sup-

port for their personal contributions. BMS is supported

by the NSF grant AST-1715122 and acknowledges sup-

port from the DIRAC Institute in the Department of As-

tronomy at the University of Washington. The DIRAC

Institute is supported through generous gifts from the

Charles and Lisa Simonyi Fund for Arts and Sciences,

and the Washington Research Foundation. MM, MVB,

GG contributions are supported by the NASA PDART

grant 80NSSC18K0987.

Software: Astropy (Astropy Collaboration et al.

2018), numpy (Van der Walt et al. 2011), requests,

keyring, beautifulsoup4, html5lib, matplotlib (Hunter

2007), APLpy (Robitaille & Bressert 2012), pyregions

(pyregions developers 2018), regions (regions develop-
ers 2018)

REFERENCES

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,

et al. 2013, A&A, 558, A33,

doi: 10.1051/0004-6361/201322068

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M.,

et al. 2018, ArXiv e-prints.

https://arxiv.org/abs/1801.02634

Eisner, J. A., Bally, J. M., Ginsburg, A., & Sheehan, P. D.

2016, ApJ, 826, 16, doi: 10.3847/0004-637X/826/1/16

Guillochon, J., & Cowperthwaite, P. S. 2018, Research

Notes of the American Astronomical Society, 2, 27,

doi: 10.3847/2515-5172/aac2c8

Hunter, J. D. 2007, Computing In Science & Engineering,

9, 90, doi: 10.1109/MCSE.2007.55

Kochanov, R., Gordon, I., Rothman, L., et al. 2016, Journal

of Quantitative Spectroscopy and Radiative Transfer,

177, 15, doi: 10.1016/j.jqsrt.2016.03.005

Paletou, F., & Zolotukhin, I. 2014, ArXiv e-prints,

arXiv:1408.7026. https://arxiv.org/abs/1408.7026

pyregions developers. 2018, regions – ds9 region parser for

python, https://github.com/astropy/pyregions

regions developers. 2018, regions – Astropy affiliated

package for region handling,

https://github.com/astropy/regions

Robitaille, T., & Bressert, E. 2012, APLpy: Astronomical

Plotting Library in Python, Astrophysics Source Code

Library. http://ascl.net/1208.017

Tollerud, E. 2018, Astropy Proposal for Enhancement 15:

An Updated Model for the Affiliated Package Ecosystem

(APE 15), doi: 10.5281/zenodo.1246834.

https://doi.org/10.5281/zenodo.1246834

Van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011,

Computing in Science & Engineering, 13, 22,

doi: http://dx.doi.org/10.1109/MCSE.2011.37

Vogt, F. P. A. 2018. https://arxiv.org/abs/1807.02114v1

12 https://github.com/spacetelescope/MAST-API-Notebooks/
blob/master/AstroqueryIntro/AstroqueryFunctionalityDemo.
ipynb

8

APPENDIX

A. EXAMPLE

In this appendix, we show an example of astroquery in action, highlighting the ability to use multiple modules and

interact with astropy’s table, coordinate, and unit tools. This example, shown in Figure 1, approximately reproduces

Figure 1 of Eisner et al. (2016), but with a different background. It can also be found on astroquery’s gallery page

(http://astroquery.readthedocs.io/en/latest/gallery.html). Another illustration of how to use astroquery tools in a
finder chart making tool is fcmaker, which produces charts for ESO observations using astroquery (Vogt 2018).

13 https://gea.esac.esa.int/archive-help/tutorials/python_
cluster/index.html

9

Create a finder chart and overlay two catalogs using the Vizier and SkyView

tools

from astropy import units as u

from astropy.coordinates import SkyCoord

from astropy.wcs import WCS

from astroquery.skyview import SkyView

from astroquery.vizier import Vizier

import matplotlib.pyplot as plt

center = SkyCoord.from_name("Orion KL")

Grab an image from SkyView of the Orion KL nebula region

imglist = SkyView.get_images(position=center, survey="2MASS-J")

The returned value is a list of images, but there is only one

img = imglist[0]

"img" is now a fits.HDUList object; the 0th entry is the image

mywcs = WCS(img[0].header)

fig = plt.figure(1)

fig.clf() # Just in case one was open before

Use astropy's wcsaxes tool to create an RA/Dec image

ax = fig.add_axes([0.15, 0.1, 0.8, 0.8], projection=mywcs)

ax.set_xlabel("RA")

ax.set_ylabel("Dec")

ax.imshow(img[0].data, cmap="gray_r", interpolation="none", origin="lower",

norm=plt.matplotlib.colors.LogNorm())

Retrieve a specific table from Vizier to overplot

tablelist = Vizier.query_region(

center, radius=5*u.arcmin, catalog="J/ApJ/826/16/table1")

Again, the result is a list of tables, so we"ll get the first one

result = tablelist[0]

Convert the ra/dec entries in the table to astropy coordinates

tbl_crds = SkyCoord(result["RAJ2000"], result["DEJ2000"],

unit=(u.hour, u.deg), frame="fk5")

We want this table too:

tablelist2 = Vizier(row_limit=10000).query_region(

center, radius=5*u.arcmin, catalog="J/ApJ/540/236")

result2 = tablelist2[0]

tbl_crds2 = SkyCoord(result2["RAJ2000"], result2["DEJ2000"],

unit=(u.hour, u.deg), frame="fk5")

Overplot the data in the image

ax.plot(tbl_crds.ra, tbl_crds.dec, "*", transform=ax.get_transform("fk5"),

mec="b", mfc="none")

ax.plot(tbl_crds2.ra, tbl_crds2.dec, "o", transform=ax.get_transform("fk5"),

mec="r", mfc="none")

Zoom in on the relevant region

ax.axis([100,200,100,200])

plt.show()

10

83°49'20" 00" 48'40" 20" 00"

-5°21'40"

22'00"

20"

40"

23'00"

RA

D
e
c

Figure 1. An example figure made using astroquery. The skyview package was used to download a 2MASS J-band image. The
vizier was used to download two star catalogs from different publications and overplot them; the blue stars show sources from
the older, less complete catalog and the red circles show sources from a more recent, more complete catalog.

